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Abstract: Lipedema is an often underdiagnosed chronic disorder that affects subcutaneous adipose 
tissue almost exclusively in women, which leads to disproportionate fat accumulation in the lower 
and upper body extremities. Common comorbidities include anxiety, depression, and pain. The 
correlation between mood disorder and subcutaneous fat deposition suggests the involvement of 
steroids metabolism and neurohormones signaling, however no clear association has been 
established so far. In this study, we report on a family with three patients affected by sex-limited 
autosomal dominant nonsyndromic lipedema. They had been screened by whole exome sequencing 
(WES) which led to the discovery of a missense variant p.(Leu213Gln) in AKR1C1, the gene encoding 
for an aldo-keto reductase catalyzing the reduction of progesterone to its inactive form, 20-α-
hydroxyprogesterone. Comparative molecular dynamics simulations of the wild-type vs. variant 
enzyme, corroborated by a thorough structural and functional bioinformatic analysis, suggest a 
partial loss-of-function of the variant. This would result in a slower and less efficient reduction of 
progesterone to hydroxyprogesterone and an increased subcutaneous fat deposition in variant 
carriers. Overall, our results suggest that AKR1C1 is the first candidate gene associated with 
nonsyndromic lipedema. 

Keywords: lipedema; subcutaneous fat; AKR1C1; aldo-keto reductase activity; steroid hormone 
metabolism; whole exome sequencing; molecular modelling 
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1. Introduction 

Lipedema is a chronic debilitating disorder affecting subcutaneous (SC) adipose tissue 
characterized by bilateral increased circumference of extremities, pain sensations, and bruising. It 
leads to a disproportionate body shape [1] with subcutaneous fat accumulation in the lower and also 
upper extremities that can result in considerable disability. The hypertrophic fat pads are typically 
unresponsive to dietary regimens or physical activities [2]. The disease develops almost exclusively 
in females during or after puberty, pregnancy, or even menopause, and often in conjunction with 
sexual hormonal changes. Moreover, anxiety and depression constitute important psychological 
comorbidity in women with lipedema [1,3]. Although the condition is well described, and an 
estimated 8 to 17% of adult women worldwide are affected, it is still often underdiagnosed. 

Self-reported positive family history of lipedema has been found for up to 64% of women, 
therefore, a genetic etiology for lipedema is strongly suggested [4]. This disease can be differentiated 
in nonsyndromic and syndromic forms. Eleven genes involved in seven different comorbidities 
related to syndromic lipedema have already been identified [5]. The causes of nonsyndromic 
lipedema are unclear and no genetic components have been identified yet, however familial cases of 
nonsyndromic lipedema are common, and a genetic cause has been suspected. A study from 2010 
showed that within six families of more than three generations with lipedema, a genetic autosomal-
dominant hereditary pattern with sex limitation was found [6]. 

Lipedema is an almost exclusive sex-restricted disease of women. Sex differences include a 
larger subcutaneous (SC) adipose tissue in women as compared with men, and the relationship of 
this tissue with the production of steroid hormones has been well described [7]. It is known that sex 
hormones also determine the anatomical site of the accumulation of adipose tissue [8,9]. Western blot 
analysis has demonstrated that both progesterone receptor isoforms (PR-A and PR-B) were present 
in human SC adipose tissue [10]. Steroid production levels influence each other and a change in their 
metabolism leads to several consequences on subcutaneous fat. For example, estradiol is important 
to mobilize adipose energetic reserve, and in the brain, it contributes to the regulation of body energy 
homeostasis [3,11], whereas, in rats, progesterone reverses the weight-reducing actions of estradiol 
[12,13]. This suggests a differential type of regulation of the SC adipose tissue cells by different sex 
steroids. 

Growing evidence suggests that sex hormone-specific effects could be one of the key biological 
features for higher mood disease prevalence in women [14]. Neurosteroid hormones or their 
derivatives influence the regulation of the anxiety-related brain functions, thereby modulating 
individual anxiety states [14]. For example, derivatives of progesterone, pregnanolone, and 
allopregnanolone have been shown to be highly selective and potent allosteric modulators of GABAA 
receptors playing a pivotal role in anxiety [15]. Moreover, abnormal neurosteroidogenesis is 
implicated in pathological conditions associated with a dysregulation of neuronal inhibition, such as 
pathological anxiety and depression [16]. Neurosteroids are also important in the regulation of pain 
perception. Some studies have highlighted that progesterone and its derivatives, 
dihydroprogesterone and allopregnanolone, had a specific neuroprotective action in the central and 
peripheral nervous system [17]. Allopregnanolone has also been proven to exert an analgesic effect 
in various pain models such as the sciatic nerve crush injury model [18]. 

In summary, dysfunction of sex steroids results in abnormal fat distribution in predisposed 
subjects, especially in females at the time of puberty [7]. The homeostasis of steroid hormones is finely 
regulated by hydroxysteroid dehydrogenase (HSD) enzymes expressed in adipocytes that constitute 
SC adipose tissue. In isolated mature adipocytes, progesterone is converted to 20-
hydroxyprogesterone as the main metabolite, most likely through the activity of aldo-keto 
reductases, a class of HSDs. In particular, AKR1C1 (aldo-keto reductase family 1 member C1) 
predominantly inactivates progesterone into 20-α-hydroxyprogesterone via its 20α-HSD activity, 
indirectly regulating the adiposity of SC fat [3,11]. 

In this work, we analyzed a family with apparent monogenic nonsyndromic lipedema in order 
to find the causative gene. We employed whole exome sequencing (WES) and identified a genetic 
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variant of AKR1C1 whose effect has been thoroughly investigated in silico with bioinformatic tools 
[19], which suggested a partial loss-of-function (LoF) associated with the identified variant. 

2. Results 

2.1. Identification of a Missense AKR1C1 Variant in Lipedema Patients 

Given the absence of known genes associated with nonsyndromic lipedema and given the 
apparently sex-limited autosomal dominant transmission of the condition in this family, we 
performed a WES analysis to identify the responsible variant. This rare pedigree is composed of 12 
individuals, three affected and nine healthy (Figure 1). The analysis was performed by sequencing 
exons and intron-exon junctions of all known genes and focused on heterozygous variants, present 
in the affected patients (black circles) and absent in all control family members (white circles and 
squares in Figure 1). Subsequently, these variants were filtered by removing those present in the other 
22 unrelated individuals sequenced by WES and those present in more than 1% of the control subjects 
from the gnomAD population database (https://gnomad.broadinstitute.org/). Finally, all 
synonymous variants were removed from the list. Variants that segregated with the affected 
phenotype are reported in Supplementary Table S1. 

 
Figure 1. (a) Family tree; (b) Lipedema of the proband (III:6), her sister (III:2), and her daughter (IV:4). 
The right leg ulcer of proband’s sister (III:2) is the chronic result of a post traumatic post-phlebitic 
syndrome. WES analysis was performed on almost all family members of the last two generations 
and the AKR1C1 genotype is indicated next to the individual symbols (+/– are affected heterozygotes 
with the L213Q variant; –/– are unaffected wild-type homozygotes). 

Although none of the variants was found in genes already associated with syndromes that 
include lipedema, some variants reside in genes that regulate steroid hormone signaling and are 
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involved in causing abdominal obesity or metabolic syndrome. These variants can cause lipedema 
directly or contribute to its multifactorial etiology. For example, one variant has been found in the 
NGEF gene, which has been associated with abdominal obesity [20,21], while another has been found 
in FBXL7, which has been associated with metabolic syndrome [22] and with an altered 
pharmacological response to corticosteroids [23]. However, the most promising variant (c.638T > A; 
p.Leu213Gln) was found in AKR1C1, a gene that has been involved in progesterone metabolism [24] 
and is highly expressed in adipocytes and subcutaneous fat. Sanger sequencing confirmed the 
presence of this missense variant (indicated in short as L213Q) in the three affected females and 
excluded it in the unaffected family members (data not shown). Then, we performed real-time qPCR 
on total RNA extracted from blood of family members to evaluate the effect of the variant AKR1C1 
mRNA stability and, as shown in Figure 2, we found no difference between affected (black bars) and 
unaffected (white bars) family members. 

 
Figure 2. Relative expression of AKR1C1 in the blood of the affected (black) and healthy (white) family 
members. 

2.2. Structural Analysis and Molecular Dynamics Simulations 

The three-dimensional structure of AKR1C1 shows the typical architecture of an alpha-beta 
barrel, specifically exhibiting the triose-phosphate isomerase (TIM) barrel fold, consisting of eight β-
strands coupled with their respective α-helix (Figure 3A). Residue Leu213 was located in the “core” 
region of the protein (Figure 3A), on the outward side of seventh β-strand of the β-barrel constituting 
the so-called “pore” region, and it was found to be involved in a network of highly persistent 
hydrophobic interactions (Figure 3B) with residues L191 (81.7% persistence over the 1 µs Molecular 
Dynamics (MD) simulations), V265 (94.6%), L202 (27.1%), and L203 (96.4%). The L213Q variant 
associated with lipedema was unable to create these hydrophobic interactions due to the 
physicochemical nature of its polar sidechain, resulting in a destabilization of the hydrophobic 
network surrounding residue 213. Indeed, the persistence of the interaction between V191 and L202 
decreased from 22.2% in the WILD-TYPE to 17.9% in the L213Q variant, similar to the behavior 
exhibited by the interaction between V265 and L203, whose persistence decreased from 63% to 60.9%. 
In addition, the presence of a polar sidechain gave rise to the formation of novel, yet less persistent 
hydrogen bonds (Figure 3C) with N189 (13.8%), C193 (43.4%), Q199 (53.9%), C206 (19.9%), and R263 
(18%). 
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Figure 3. (A) Three-dimensional structure of AKR1C1 complexed with NADP+ and hPGS. Protein 
structure is shown as grey cartoon, loop A is colored in violet, loop B in yellow, and loop C in green. 
Residue L213, NADP+, and hPGS are represented as sticks and colored in red, orange, and blue, 
respectively; O atoms are depicted in red, N atoms in blue, and H atoms in white. For the sake of 
clarity, only non-polar H atoms are shown; (B) Detail of the residues involved in hydrophobic 
interactions with L213. Protein structure is shown as light blue cartoon; residues are shown as sticks; 
L213 is shown in red; V191, L202, L203, and V265 are shown in yellow; (C) Detail of the residues 
involved in hydrogen bonds with Q213. Protein structure is shown as light orange cartoon; residues 
are shown as sticks; Q213 is shown in red; N189, C193, Q199, C206 and R263 are shown in green. O 
atoms are colored in red, N atoms in blue, and S atoms in yellow, hydrogen bonds are shown as 
dashed lines. Please note that distances between H-bond donors and acceptors and geometric features 
are merely representative, as the figure represents a single frame out of 100,000 frames spanned by 
MD simulations. 

Despite the rearrangement of the interaction network of residue 213, MD simulations suggest 
that the lipedema-associated variant does not dramatically affect the three-dimensional structure of 
AKR1C1. Indeed, as shown by the RMSF profiles (Figure S1), the two variants exhibited a very similar 
protein flexibility, with L213Q variant showing a small reduction in the regions encompassing 
residues 68–80 and 165–180. Interestingly, the largest differences occurred in two out of the three 
loops representing the steroid-binding cavity, namely the C-terminal part of loop C (310–320), where 
the L213Q variant seemed to be less flexible, and loop A (117–134), where the WILD-TYPE was 
significantly more structurally stable, suggesting an allosteric effect of the variant. 

To evaluate the effect of the structural rearrangement of the steroid-binding loop, we monitored 
the solvent accessibility of the hPGS and NADP+, as well as the interaction energy between protein, 
steroid, and cofactor. The results, summarized in Table 1, suggest that both hPGS and NADP+ are 
significantly more solvent-exposed in the case of the L213Q variant (Supplementary Videos V1 and 
V2), specifically the solvent-accessible surface of NADP+ increased from 1.10 ± 0.26 to 1.55 ± 0.35 nm2, 
whereas that of hPGS increased from 0.98 ± 0.43 to 1.46 ± 0.59 nm2. Such an increase in solvent 
accessibility resulted in a substantial decrease of the interaction energy between hPGS and both 
AKR1C1 (–122.91 ± 23.60 kJ/mol vs. –105.66 ± 23.88 kJ/mol) and NADP+ (–9.75 ± 7.74 kJ/mol vs. –5.22 
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± 6.17 kJ/mol), thus, implying a loss of non-covalent interactions between protein, substrate, and 
cofactor. 

Table 1. Structural and energetic descriptors calculated over 1000 ns MD simulations. Data are 
reported as average ± standard deviation, SAS represents the solvent-accessible surface of either 
NADP+ or hPGS, IEP-hP is the interaction energy between protein and hPGS, IEN-hP is the interaction 
energy between NADP+ and hPGS. 

Variant SAS NADP+ (nm2) SAS hPGS (nm2) IEP-hP (kJ/mol) IEN-hP (kJ/mol) 
WILD-TYPE 1.10 ± 0.26 0.98 ± 0.43 –122.91 ± 23.60 –9.75 ± 7.74 

L123Q 1.55 ± 0.35 1.46 ± 0.59 –105.66 ± 23.88 –5.22 ± 6.17 

2.3. QSAR Models Predict a Partial Loss of Function for The L12Q AK1RC1 Variant 

A quantitative structure–activity relationship (QSAR) model was built to predict the enzymatic 
parameters (the turnover number kcat and the enzyme catalytic efficiency kcat/Km) described in [25] for 
the AKR1C1 variant using the structural and energetic descriptors derived from 20 ns MD 
simulations of WILD-TYPE AKR1C1 and its variants. Such methods have been proven to effectively 
predict the functional effects of variants on different classes of enzymes such as serine proteases [26]. 

The descriptors reported in Table 1, whose differences were proven to be statistically significant 
(one-tailed t-test, p < 0.001), were tested for single linear correlation with the log10 of the three 
functional descriptors. The highest single correlation value (R2 = 0.72, Table S2) was obtained by the 
combination (model A) of log kcat and the interaction energy between AKR1C1 and hPGS (IEP-hP), 
resulting in the following model: 𝒎𝒐𝒅𝒆𝒍 𝑨: 𝐥𝐨𝐠 𝒌𝒄𝒂𝒕 = −𝟑. 𝟓𝟐𝟏 − (𝟎. 𝟎𝟒𝟒𝟒 ∗ 𝑰𝑬𝑷ି𝒉𝑷) (1) 

Noticeably, although the combination log kcat and SAS hPGS also showed a satisfactory R2 value 
(0.68), the two independent variables (IEP-hP and SAS hPGS) resulted to be correlated (R2 = 0.63, 
Supplementary Table S2), therefore such model was discarded. In addition, the double linear 
correlation with the combination IEP-hP and IEN-hP resulted in a high R2 (0.77, Supplementary Table S2) 
but the correlation was found to be substantially dependent on IEP-hP, leading to the rejection of the 
model due to redundancy. 

No single linear correlation was found between any of the four MD descriptors and any of the 
other two functional parameters log(Km) and log(kcat/Km) (Supplementary Table S2). Then, a double 
linear correlation model was employed for SAS-based and IE-based descriptors after assessing the 
independence of each couple of variables using single linear regression (R2 = 0.32 and 0.13, 
respectively, Supplementary Table S3). No double linear correlation was found again with respect to 
the logKm, while the best double linear correlation (R2 = 0.73, Supplementary Table S2) was obtained 
by the model combining the IEP-hP and the interaction energy between hPGS and NADP+ (IEN-hP) with 
the logkcat/Km (model B) as follows: 𝒎𝒐𝒅𝒆𝒍 𝑩: 𝐥𝐨𝐠 𝒌𝒄𝒂𝒕𝑲𝒎  =  −𝟕. 𝟓𝟖𝟏 − (𝟎. 𝟎𝟕𝟔𝟗 ∗ 𝑰𝑬𝑷ି𝒉𝑷) + (𝟎. 𝟎𝟒𝟐𝟔 ∗ 𝑰𝑬𝑵ି𝒉𝑷) (2) 

Both models were validated using the leave-one-out cross validation method, resulting in an R2 
= 0.70 ± 0.16 for model A and R2 = 0.74 ± 0.06 for model B, with MSE = 0.125 and 0.394, respectively. 
Then, the QSAR models were used to predict the effects of the L213Q substitution on AKR1C1 
catalytic activity. 

Interestingly, the estimation of the Michaelis constant (Km), the catalytic constant (kcat), and the 
catalytic efficiency (kcat/Km) resulted in a 20% increase in Km associated with a 41% reduction of the 
kcat and an almost halved catalytic efficiency (Table 2). Overall, our results suggest that L213Q variant 
can be associated with the lipedema clinical phenotype via a partial loss-of-function mechanism, as 
the reduction of PGS to hPGS would be slower and less efficient. 
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Table 2. Overview of the MD-derived energetic descriptors and the functional descriptors of AKR1C1 
variants. IEP-hP is the interaction energy between protein and hPGS, IEN-hP is the interaction energy 
between NADP+ and hPGS. The novel L213Q variant is highlighted in grey, ↓ and ↑ represent 
values lower and higher than the WILD-TYPE, respectively. 

Variant IEP-hP (kJ/mol) IEP-hP (kJ/mol) Km (μM) kcat (min−1) 
kcat/Km  

(min−1 μM−1) 

R304L -119.28 ± 81.07 -31.77 ± 8.89 283.3 ± 13.2 96.1 0.3 ↓ 
E127D -97.50 ± 63.49 -14.29 ± 9.22 9.4 ± 2.5 4.4 0.4 ↓ 
H222I -111.04 ± 67.84 -28.61 ± 8.76 28.6 ± 5.2 18.5 0.6 ↓ 
H222S -110.99 ± 68.25 -8.57 ± 5.19 25.6 ± 5.7 39.6 1.5 ↓ 
L213Q -114.93 ± 24.89 -8.90 ± 6.87 5.1 38.2 7.55 ↓ 
T307V -126.19 ± 70.32 -33.38 ± 7.61 4.1 ± 0.3 41.3 10 ↓ 

WILD-TYPE -118.72 ± 13.23 -5.69 ± 7.10 4.2 ± 0.8 65.1 15.2  
D309L -126.98 ± 83.16 -19.78 ± 10.08 4.6 ± 0.6 119.5 25.9 ↑ 
Y305F -120.12 ± 84.75 -19.72 ± 6.08 5.6 ± 1.9 156.3 27.9 ↑ 

3. Discussion 

While genetic factors apparently regulate subcutaneous adipose tissue distribution, so far, no 
monogenic cause of nonsyndromic primary lipedema has been discovered [5]. With our study, we 
argue in favor of the involvement of AKR1C1 in lipedema. To date, AKR1C1 has not been implicated 
in any genetic condition characterized by or including lipedema among its clinical manifestations. 
The AKR1C1 variant that we found in this family consisted of a Leu213Gln substitution, located 
outside the active site of the aldo-keto reductase 1C1 that is predicted to reduce steroid hormones 
catalysis. Indeed, bioinformatic analysis suggests a partial loss of function of 20α-HSD activity of the 
mutated AKR1C1. The AKR1C enzymes exert their HSDs activity mostly in subcutaneous adipose 
tissue as the reduction and inactivation of steroid hormones [27,28]. Specifically, AKR1C1 can 
catalyze the reduction of progesterone to 20α-hydroxyprogesterone and allopregnanolone to 5α-
pregnane-3α-20α diol by its 20α-HSD activity. In this way, AKR1C1 decreases the levels of 
progesterone and allopregnanolone in peripheral adipose tissue [29]. Interestingly, AKR1C1 
expression was also higher in subcutaneous fat of women with obesity, showing its implication in 
metabolic disorders [30]. 

In addition, an AKR1C1 loss of function could lead to a decrease in progesterone catalysis and a 
consequent increase of lipogenesis mediated by this steroid hormone. Indeed, previous murine 
studies have shown that progesterone has lipogenic action on adipose tissue by upregulating 
adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c 
(ADD1/SREBP1c) expression in primary cultured preadipocyte from rat parametrial adipose tissue 
[31]. ADD1/SREBP1c promotes adipocyte differentiation and gene expression linked to fatty acid 
metabolism [32]. Transcriptomic and functional analysis of differentiated adipocytes of Landrace 
piglets showed many significantly enriched lipid deposition and steroid hormone biosynthesis that 
involved hydroxysteroid dehydrogenases activity of AKR1C1 [33]. 

Moreover, AKR1C1 is also involved in catalyzing the synthesis of prostaglandins in humans 
[34]. It has been shown that prostaglandin 2 alpha (PGF2α) inhibited adipogenesis by activating its 
specific receptor on preadipocytes [35,36]. Since AKR1C1 promotes PGF2α synthesis, its diminished 
activity in our patients would result in lower levels of PGF2α, and therefore more adipogenesis. 
However, our bioinformatic analysis focused on AKR1C1 Leu213Gln activity on progesterone, for 
which quantitative functional data were available, and further computational analyses corroborated 
by specific functional studies would be needed to assess the consequence of our findings on the 
interaction with PGF2α. 

Finally, although lipedema is typically reported as a painful disorder [37], our patients did not 
complain of pain or tenderness to palpation. This could be explained by the reduced activity of 
AKR1C1 on allopregnanolone, a neurosteroid that has an analgesic effect by enhancing GABAA 

currents [17]. In fact, opening of the GABAA receptor causes depolarization of dorsal root ganglion 
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cells and blocks nociceptive transmission [38]. We speculate that a partial loss of function in 20α-HSD 
activity of AKR1C1 would result in diminished inactivation of allopregnanolone, that could still exert 
its analgesic effect. 

4. Materials and Methods 

4.1. Ethical Compliance 

The study was performed according to the declaration of Helsinki and was approved by thelocal 
ethics committee (Comitato Etico dell’Azienda Sanitaria dell’Alto Adige, Protocol number 0111181-
BZ). Written informed consent was obtained from the family members for publication prior to the 
study. 

4.2. Subjects 

A 54-year-old female was diagnosed with lipedema at the San Giovanni Battista Hospital, in 
Rome (Italy). Lipedema occurred symmetrically in the legs and hips. Onset of the condition was 
around 16 years of age. No obesity-related comorbidities or endocrine alterations were diagnosed. 
The proband reported that the same condition was also present in her sister and her daughter (Figure 
1). Clinical details of affected family members are reported in Table 3. 

Table 3. Clinical characteristics of the proband and her family. 

Clinical Characteristics III:2 
Sister 

III:6 
Proband 

IV:4 
Daughter 

Age 68 54 25 
Age of onset  Puberty Puberty Puberty 

Menarche Regular Regular Regular 
Height (m) 1.68 1.65 1.75 

Weight (Kg) 68 79 56 

BMI 
24.09  

normal 
 

29.02 
overweight 

 

18.29 
normal 

 

Lipedema stage Localization of fat depots 
Stage 2, Type 2  

thighs and 
buttocks 

Stage 2, Type 2  
thighs and 
buttocks 

Stage 1, Type 
2 

thighs  
Comorbidity (diabetes, hypertension, 

dyslipidemia) 
Hypertension  None none  

Endocrine alteration (e.g., thyroid, insulin-
resistance) 

Thyroid 
disfunction  

None none  

Pain in the morning  
(VAS scale 1–10) 

0 0 0 

Pain at night  
(VAS scale 1–10)  

0 0 0 

Anxiety/depression/fatigue Anxiety none none 

4.3. Whole Exome Sequencing 

Genetic testing was performed on germline DNA extracted from the blood of relevant family 
members. DNA library preparation and exome capture were performed using the Agilent SureSelect 
Clinical Research Exome kit (54Mb) according to the manufacturer′s protocol. Libraries were pooled 
post capture. Paired-end sequencing, 2 × 100 bases, was performed on Illumina® HiSeq™4000 
platform. PipeMAGI pipeline was used to annotate and filtrate variants as previously described [39]. 
The American College of Medical Genetics (ACMG) 2015 criteria [40] were used to classify identified 
variants as pathogenic, likely pathogenic, or variant of uncertain significance (VUS). Variants were 
also verified on ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), OMIM (https://www.omim.org/), 
and VarSome (https://varsome.com/) databases. 
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4.4. Sanger Sequencing Analysis 

Identified variants with likely clinical significance were confirmed by Sanger sequencing on a 
CEQ8800 Sequencer (Beckman Coulter, Brea, CA, USA). The following primers were used to amplify 
the AKR1C1 (NM_001353.5) fragment GCTCAAAGAATCTTACCTCATCCC and 
TATGAATTTCCAGCTCCTTCCAAC, whereas the following internal primer was used to confirm by 
sequencing the presence of the variant CCTCAACATCACCTGGGATCT. 

4.5. Quantitative Real-Time Polymerase Chain Reaction 

Total RNA was extracted from blood using the Tempus™ Spin RNA Isolation Kit following the 
manufacturer’s protocol. The SuperScript VILO cDNA Synthesis Kit was used to generate first strand 
cDNA. Quantitative real-time polymerase chain reaction (qPCR) was performed by using the 
PowerUp™ SYBR™ Green Master Mix (Thermo Fisher Scientific, Vilnius, Lithuania) on a 
QuantStudio 3 Real-Time PCR System. The primers used in the qPCR experiments were previously 
described [41,42] and are the following: GACAAGCTTCCCGTTCTCAG and 
GGAGTCAACGGATTTGGTCG for GAPDH, CCTAAAAGTAAAGCTTTAGAGGCCACC and 
GAAAATGAATAAGGTAGAGGTCAACATAAT for AKR1C1. 

4.6. Molecular Modeling And Molecular Dynamics (MD) Simulations 

MD simulations of human AKR1C1 in ternary complex with NADP+ and 20 α-
hydroxyprogesterone (hPGS) were performed using as a starting structure the PDB file with entry 
1MRQ [25] by retaining crystallographic water molecules within 10 Å of any atom of either NADP+ 
or hPGS. In silico mutagenesis of variants E127D, L213Q, H222I, H222S, R304L, Y305F, T307V, and 
D309L was performed using the highest-ranked non-clashing backbone-dependent rotamer 
provided by “mutate residue” function of Maestro v. 12.2.012 (Schrodinger LLC, New York, NY, 
USA) suite. All atom MD simulations were run using GROMACS 2019.2 simulation package [43], 
adopting CHARMM36m [44] force field. Parameters for hPGS and NADP+ were obtained using the 
Input Generator module of CHARMM-GUI [45]. 

All AKR1C1 variants were subjected to the same system preparation and energy minimization 
as in [46], briefly consisting of placing the protein complex 1.2 nm from dodecahedral simulation box 
edges. Water molecules were added to the system and neutralized with 150 mM KCl (system size 
~47800 atoms), finally subjected to steepest descent (Fmax = 1000 kJ mol− 1 nm− 1) and conjugate gradient 
(Fmax = 500 kJ mol− 1 nm− 1) minimization of the sidechains. The minimized systems were subjected to 
the same equilibration procedure as in [47] summarily involving two 2 ns steps at a constant 
temperature (310 K), with and without position restraints on the backbone atoms. Finally, WILD-
TYPE AKR1C1 and L213Q variant underwent extensive 2 × 500 ns MD simulations at constant 
pressure and temperature (1 atm and 310 K, respectively), whereas all the other variants directly 
involved in the catalytic process described in [25] were subjected to 20 ns MD simulations due to their 
impact on the enzyme activity. 

The solvent-accessible surface (SAS) and the molecular mechanics interaction energy were 
calculated using the gmx sasa and gmx energy functions implemented in GROMACS, respectively. The 
structural index of flexibility root mean square fluctuation (RMSF), calculated as the time-averaged 
root mean square deviation of Cα with respect to the average structure, was calculated by GROMACS 
function gmx rmsf. Data reported in Table 1 refer to the average ± standard deviation calculated over 
1000 ns MD simulations, whereas data reported in Table 2 refer to the same values calculated only 
on the first 20 ns of MD simulation of WILD-TYPE and L213Q variant, for timescale consistency with 
respect to all the other variants. The statistical significance of the differences in SAS and interaction 
energies observed between WILD-TYPE and L213Q variant was assessed using a one-tailed t-test (p 
< 0.001). 

The persistence of H-bonds and hydrophobic interactions during the 1000 ns trajectories was 
calculated using PyInteraph [48], using the parameters for describing sidechain–sidechain 
interactions defined in [49], and refers to the percentage of frames where the interaction distance and 
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angle constraints were satisfied. This approach has been shown to be able to recognize allosteric 
properties in protein complexes undergoing extensive MD simulations [47,49]. 

4.7. QSAR Models and Statistical Analysis 

A single or double linear correlation analysis was performed between the enzymatic parameters 
kcat, KM, and kcat/KM of the reduction of progesterone to 20α-hydroxyprogesterone measured in [25] 
and the set of descriptors calculated on the MD trajectories by determining the correlation coefficient 
matrix. The descriptor, or linear combination of descriptors, with the highest correlation coefficient 
(R2) were used for building quantitative structure–activity relationship (QSAR) models. For double 
linear correlation models, the non-correlation of the independent variables defined by the descriptors 
was verified by linear regression. The robustness of each of the two final models was assessed using 
leave-one-out (LOO) cross validation, the statistical quality of the models was verified by the average 
R2 and the mean square error (MSE) descriptor, calculated as follows: 

𝑀𝑆𝐸 = 1𝑛 ෍(𝑥௜௢௕௦௘௥௩௘ௗ − 𝑥௜௣௥௘ௗ௜௖௧௘ௗ)ଶ௡
௜ୀଵ  (3) 

5. Conclusions 

In conclusion, we suggest that regulation of steroid hormone levels by aldo-keto reductase 1C1 
plays an important role in the accumulation of subcutaneous adipose tissue. Our results are 
consistent with AKR1C1 being the first candidate gene for lipedema. 

Supplementary Materials: The following are available online at www.mdpi.com/1422-0067/21/17/6264/s1, 
Supplementary Table S1: Variants identified in Family 1 by WES, Supplementary Table S2: Single or double 
linear correlation coefficients of the functional parameters and independent variables identified by the MD 
descriptors, Supplementary Table S3: Single linear correlation coefficients of the independent variables 
identified by the MD descriptors, Supplementary Figure S1: Root mean square fluctuation of Cα atoms 
calculated over 1 µs MD simulations of AKR1C1 WILD-TYPE and L213Q, Video S1: Solvent-accessible surface 
of AKR1C1 WILD-TYPE, Video S2: Solvent-accessible surface of AKR1C1 L213Q. 
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